Count Color
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 53639 | Accepted: 16153 |
Description
Chosen Problem Solving and Program design as an optional course, you are required to solve all kinds of problems. Here, we get a new problem. There is a very long board with length L centimeter, L is a positive integer, so we can evenly divide the board into L segments, and they are labeled by 1, 2, ... L from left to right, each is 1 centimeter long. Now we have to color the board - one segment with only one color. We can do following two operations on the board: 1. "C A B C" Color the board from segment A to segment B with color C. 2. "P A B" Output the number of different colors painted between segment A and segment B (including). In our daily life, we have very few words to describe a color (red, green, blue, yellow…), so you may assume that the total number of different colors T is very small. To make it simple, we express the names of colors as color 1, color 2, ... color T. At the beginning, the board was painted in color 1. Now the rest of problem is left to your.
Input
First line of input contains L (1 <= L <= 100000), T (1 <= T <= 30) and O (1 <= O <= 100000). Here O denotes the number of operations. Following O lines, each contains "C A B C" or "P A B" (here A, B, C are integers, and A may be larger than B) as an operation defined previously.
Output
Ouput results of the output operation in order, each line contains a number.
Sample Input
2 2 4C 1 1 2P 1 2C 2 2 2P 1 2
Sample Output
21 题目链接: http://poj.org/problem?id=2777 题目大意: 给L长度的木板涂色,一开始木板颜色相同,有T种颜色可用,O(不是零是 ou )次操作。每次操作有两种情况,一种是改变木板的颜色也就是给木板的某个区间涂色,另一种是询问给定区间的颜色种类数量。 题目分析: 这题比较明显是使用线段树解决问题,但是有一个问题是:超时。那么如何解决这个问题呢,这时候就引进了一个很优秀的操作————懒标记。 懒标记是什么呢?“懒”的意思很明显了,就是说在不涉及某个节点的情况下,选择性的变懒,不去改变。举个例子: 如果改变区间的颜色,那么我们可以不去找到区间内每个叶子然后改变每个叶子的颜色,而是找到在这个区间内的另外的区间(可能是一个区间,也可能是很多个区间,也有可能包括了一个区间和n个叶子,也有可能只有叶子),把找到的区间改变颜色,并把区间懒标记。 懒标记后,如果再次查询到该节点,那么需要做下推操作,即把该节点的颜色,下推给子节点,改变子节点的颜色,并把该节点懒标记清空。 对于颜色的存储,这题还是需要注意的。我们很容易想到存储每个节点区间的颜色种类数,但是这样存储问题就来了,怎么确定子节点中颜色是否相同。所以有引进一个操作,二进制表示法。 我们可以看到颜色的种类不超过30种,所以可以用一位二进制表示一种颜色,即颜色一为(1),颜色二为(10),颜色三为(100),颜色四为(1000),依次类推。 那么我们存储父节点颜色怎么存储呢? 或操作(|)。
tree[k].color=tree[k<<1].color|tree[k<<1|1].color;
解释一下:或操作,如果颜色相同,那么结果仍保存该颜色;如果子节点一个有该颜色,另一个没有该颜色,操作结果仍然有该颜色;如果两个子节点都没有该颜色,那么结果也没有该颜色。 最后得到的结果只需要判断在二进制下有几个1就可以了。 还要注意一个坑就是 A和B大小不确定。 AC代码如下:
#includeconst int MAX=1e6+5;struct a{ int left,right; int lazy,ans;}tree[MAX<<2];void init(int length) //懒标记初始化 { for(int i=1;i<=length;i++) { tree[i].lazy=0; }}void btree(int k,int l,int r) //建树操作 { tree[k].left=l;tree[k].right=r; if(l==r) { tree[k].ans=1;return ; } int mid=(l+r)>>1; btree(k<<1,l,mid); btree(k<<1|1,mid+1,r); tree[k].ans=(tree[k<<1].ans|tree[k<<1|1].ans);}void push_down(int k) //下推 { if(tree[k].left==tree[k].right) return ; tree[k<<1].lazy=tree[k].lazy; tree[k<<1|1].lazy=tree[k].lazy; tree[k<<1].ans=1<<(tree[k].lazy-1); tree[k<<1|1].ans=1<<(tree[k].lazy-1); tree[k].lazy=0;}void datetree(int k,int l,int r,int co) //涂色 { if(tree[k].left>=l&&tree[k].right<=r) { tree[k].ans=1<<(co-1); tree[k].lazy=co; return ; } if(tree[k].lazy) push_down(k); int mid=(tree[k].left+tree[k].right)>>1; if(mid =r) { datetree(k<<1,l,r,co); } else { datetree(k<<1,l,r,co); datetree(k<<1|1,l,r,co); } tree[k].ans=(tree[k<<1].ans|tree[k<<1|1].ans);}int ans;void query(int k,int l,int r) //询问 { if(tree[k].left>=l&&tree[k].right<=r) { ans=(ans|tree[k].ans); return ; } if(tree[k].lazy) push_down(k); int mid=(tree[k].left+tree[k].right)>>1; if(mid =r) { query(k<<1,l,r); } else { query(k<<1,l,r); query(k<<1|1,l,r); }}int main(){ int L,color,q; char n[10]; scanf("%d%d%d",&L,&color,&q); init(L); btree(1,1,L); while(q--) { scanf("%s",n); if(n[0]=='C') { int a,b,c; scanf("%d%d%d",&a,&b,&c); if(a>b){ int t=a;a=b;b=t; } datetree(1,a,b,c); } else { int a,b; ans=0; int cnt=0; scanf("%d%d",&a,&b); if(a>b){ int t=a;a=b;b=t; } query(1,a,b); while(ans) { if(ans%2) cnt++; ans/=2; } printf("%d\n",cnt); } } return 0;}